ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
E. T. Alger, E. G. Dzenitis, E. R. Mapoles, J. L. Klingmann, S. D. Bhandarkar, J. G. Reynolds, J. W. Florio, D. M. Lord, C. Castro, K. Segraves
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 269-275
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3506
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion ignition experiments in the National Ignition Facility require a capsule containing deuterium-tritium fuel at cryogenic temperatures. To better understand how to produce and control the required uniform fuel ice layer, experimental layering targets are fabricated and assembled to be dimensionally similar to the ignition targets and vacuum leaktight at 18 K. Low production yield of these targets demanded a more quantitative understanding of the interfacial behavior of bonded joints and required the development of more deterministic assembly methods. Each sealing joint was individually analyzed, and target components, assembly processes, and tooling were modified as needed to make robust leaktight targets. The function, design, and assembly methods of experimental layering targets are described.