ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
E. T. Alger, E. G. Dzenitis, E. R. Mapoles, J. L. Klingmann, S. D. Bhandarkar, J. G. Reynolds, J. W. Florio, D. M. Lord, C. Castro, K. Segraves
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 269-275
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3506
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion ignition experiments in the National Ignition Facility require a capsule containing deuterium-tritium fuel at cryogenic temperatures. To better understand how to produce and control the required uniform fuel ice layer, experimental layering targets are fabricated and assembled to be dimensionally similar to the ignition targets and vacuum leaktight at 18 K. Low production yield of these targets demanded a more quantitative understanding of the interfacial behavior of bonded joints and required the development of more deterministic assembly methods. Each sealing joint was individually analyzed, and target components, assembly processes, and tooling were modified as needed to make robust leaktight targets. The function, design, and assembly methods of experimental layering targets are described.