ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
E. Dewald, B. Kozioziemski, J. Moody, J. Koch, E. Mapoles, R. Montesanti, K. Youngblood, S. Letts, A. Nikroo, J. Sater, J. Atherton
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 260-268
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3458
Articles are hosted by Taylor and Francis Online.
We use X-ray phase contrast imaging to characterize the inner surface roughness of deuterium-tritium (D-T) ice layers in capsules for future ignition experiments. It is therefore important to quantify how well the X-ray data correlate with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical surrogates with azimuthally uniform sinusoidal perturbations with 100-m period and 1-m amplitude demonstrated 0.02-m accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close to that required for the D-T ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the X-ray measurements. We compare first the average power spectra of individual measurements. The accuracy mode number limits of the X-ray phase contrast system benchmarked against surface characterization performed by atomic force microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are about 100 when comparing matching individual measurements. We will discuss the implications for interpreting D-T ice roughness data derived from phase contrast X-ray imaging.