ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
J. A. Koch, B. J. Kozioziemski, J. Salmonson, A. Chernov, L. J. Atherton, E. Dewald, N. Izumi, M. A. Johnson, S. Kucheyev, J. Lugten, E. Mapoles, J. D. Moody, J. W. Pipes, J. D. Sater, D. Stefanescu
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 244-252
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3455
Articles are hosted by Taylor and Francis Online.
Deuterium-tritium (D-T) single-crystal ice layers in spherical shells often form with localized defects that we believe are vapor-etched grain boundary grooves built from dislocations and accommodating slight misorientations between contacting lattice regions. Ignition implosion target requirements limit the cross-sectional areas and total lengths of these grooves, and since they are often the dominant factor in determining layer surface quality, it is important that we be able to characterize their depths, widths, and lengths. We present a variety of ray-tracing and diffraction image modeling results that support our understanding of the profiles of the grooves, which is grounded in X-ray and optical imaging data. We also describe why these data are nevertheless insufficient to adequately determine whether or not a particular layer meets the groove requirements for ignition. We present accumulated data showing the distribution of groove depths, widths, and lengths from a number of layers, and we discuss how these data motivate the adoption of layer rejection criteria in order to ensure that layers that pass these criteria will almost certainly meet the groove requirements. We also describe future improvements that will provide more quantitative information about grooves in D-T ice layers.