ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
J. A. Koch, B. J. Kozioziemski, J. Salmonson, A. Chernov, L. J. Atherton, E. Dewald, N. Izumi, M. A. Johnson, S. Kucheyev, J. Lugten, E. Mapoles, J. D. Moody, J. W. Pipes, J. D. Sater, D. Stefanescu
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 244-252
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3455
Articles are hosted by Taylor and Francis Online.
Deuterium-tritium (D-T) single-crystal ice layers in spherical shells often form with localized defects that we believe are vapor-etched grain boundary grooves built from dislocations and accommodating slight misorientations between contacting lattice regions. Ignition implosion target requirements limit the cross-sectional areas and total lengths of these grooves, and since they are often the dominant factor in determining layer surface quality, it is important that we be able to characterize their depths, widths, and lengths. We present a variety of ray-tracing and diffraction image modeling results that support our understanding of the profiles of the grooves, which is grounded in X-ray and optical imaging data. We also describe why these data are nevertheless insufficient to adequately determine whether or not a particular layer meets the groove requirements for ignition. We present accumulated data showing the distribution of groove depths, widths, and lengths from a number of layers, and we discuss how these data motivate the adoption of layer rejection criteria in order to ensure that layers that pass these criteria will almost certainly meet the groove requirements. We also describe future improvements that will provide more quantitative information about grooves in D-T ice layers.