ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
House Dems introduce clean energy bill for net zero
Democratic leaders in the House last week introduced the Climate Leadership and Environmental Action for our Nation’s Future Act (the CLEAN Future Act, or H.R. 1512), a nearly 1,000-page piece of climate change–focused legislation establishing, among other things, a federal clean electricity standard that targets a 50 percent reduction in greenhouse gas emissions from 2005 levels by 2030 and net-zero emissions by 2050.
The bill, a draft version of which was released in January 2020, presents a sweeping set of policy proposals, both sector-specific and economy-wide, to meet those targets. The final version includes a number of significant revisions to bring the legislation into closer alignment with President Biden’s climate policy campaign pledges. For example, the bill’s clean electricity standard would require all retail electricity suppliers to provide 80 percent clean energy to consumers by 2030 and 100 percent by 2035. (A six-page fact sheet detailing the updates is available online.)
V. Philipps
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 119-125
Technical Paper | TEXTOR: Plasma-Wall Interactions | dx.doi.org/10.13182/FST05-A693
Articles are hosted by Taylor and Francis Online.
Proper wall conditioning has been a major element in the development of fusion energy on the way to achieve high fusion plasma performance. Various of these techniques have been pioneered in the TEXTOR tokamak and later applied successfully in various devices worldwide. The main issues are to clean the surface from surface-bounded impurities, to remove hydrogen, and to coat the entire wall surface with a thin film of a proper first-wall material. The main benefits of wall conditioning are to control the oxygen impurity content of the plasma and to offer a suitable first-wall material. Entire coating of the first wall has allowed one to control to some extent the recycling hydrogenic fluxes but in particular to study the complex coupling between the choice of wall materials and the behavior of the plasma edge. This paper presents a review of the different wall-conditioning methods used in TEXTOR and their effects on the plasma behavior. Also, new wall-conditioning concepts, compatible with steady-state magnetic fields, are outlined briefly.