ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
R. Koch, P. Dumortier, F. Durodié, S. Huygen, A. Lyssoivan, A. M. Messiaen, P. E. Vandenplas, G. Van Wassenhove, M. Vervier, R. R. Weynants
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 97-107
Technical Paper | TEXTOR: A Flexible Device | doi.org/10.13182/FST05-A691
Articles are hosted by Taylor and Francis Online.
The original work done on TEXTOR on ion cyclotron resonance heating of the plasma is reviewed. After a brief introduction outlining the principles, the radio-frequency (rf) system is described, with its substantial evolution during time. Then, the different physics results are reviewed. Ion cyclotron heating has been performed in a large number of scenarios and under a wide range of conditions. Aside from the various minority or mode-conversion scenarios, the interaction with beam ions and the possibility of controlling fast-ion diffusion with rf have been deeply investigated. Both the interaction with the wall or edge plasma and the impact on improved core confinement were studied in detail. Pioneering work was done to demonstrate efficient heating with unshielded antennas and plasma production in a tokamak by rf alone for plasma startup assistance or wall conditioning.