ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
House Dems introduce clean energy bill for net zero
Democratic leaders in the House last week introduced the Climate Leadership and Environmental Action for our Nation’s Future Act (the CLEAN Future Act, or H.R. 1512), a nearly 1,000-page piece of climate change–focused legislation establishing, among other things, a federal clean electricity standard that targets a 50 percent reduction in greenhouse gas emissions from 2005 levels by 2030 and net-zero emissions by 2050.
The bill, a draft version of which was released in January 2020, presents a sweeping set of policy proposals, both sector-specific and economy-wide, to meet those targets. The final version includes a number of significant revisions to bring the legislation into closer alignment with President Biden’s climate policy campaign pledges. For example, the bill’s clean electricity standard would require all retail electricity suppliers to provide 80 percent clean energy to consumers by 2030 and 100 percent by 2035. (A six-page fact sheet detailing the updates is available online.)
S. A. Korepanov, P. O. Deichuli, A. A. Ivanov, V. V. Mishagin
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 309-311
Technical Paper | Open Magnetic Systems for Plasma Confinement | dx.doi.org/10.13182/FST05-A673
Articles are hosted by Taylor and Francis Online.
A diagnostic beam system has been developed for the GDT. This injector is the modification of the diagnostic injector RFX-DNBI. The system is primarily used for magnetic field measurements via motional Stark effect (MSE). The ion source provides 50keV, 5A hydrogen beam. Ions are extracted from a plasma created by an arc-discharge source and, after accelerating and focusing, are neutralized in a gas target. A plasma emitter, which is formed by collisionless expansion of a plasma jet on to the grids, has low perpendicular ion temperature. These results in rather low (0.01 rad) angular divergence of the extracted ion beam. In the accelerator, there is a set of four nested grids with 421 circular apertures of 4 mm diameter configured in a hexagonal pattern. The geometry of the elementary cell was optimized by using 2D computer code PBGUNS to obtain small angular divergence of the beam. The grids of ion optical system are spherically curved providing geometric focusing of the beam at a distance 1.5 m. Arc-discharge plasma box provides highly ionized plasma, so that the extracted beam has about 90% of full energy specie. The injector provides up to 4 ms duration pulse.