ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
A. A. Kabantsev, C. F. Driscoll
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 263-266
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A658
Articles are hosted by Taylor and Francis Online.
Weak axial variations in B(z) or (z) in "axisymmetric" plasma traps cause a fraction of the particles to be trapped axially, with a velocity-space separatrix between trapped and passing populations. The trapped and passing particles experience different dynamics in response to a variety of -asymmetries in the E × B rotating plasma, so a discontinuity in the velocity-space distribution f(v) tends to form at the separatrix. Collisional scatterings thus cause large fluxes as they smooth the distribution in a boundary layer near the separatrix. In essence, this separatrix dissipation damps the AC or DC longitudinal currents induced by plasma waves or confinement field asymmetries. This trapped-particlemediated damping and "neoclassical" particle transport often dominates in cylindrical pure electron plasmas, and may be important in other nominally symmetric open systems.