ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
S. W. Yoon et al.
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 175-178
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A633
Articles are hosted by Taylor and Francis Online.
According to the recent low gas-puff experiments in Hanbit magnetic mirror device, the achievable ion temperature is limited largely by neutral content. For discharges with the low gas-puff with the pre-ionization technique, higher ion temperature is estimated compared to the high gas-puff case. Neutral transport and corresponding particle balance in this low gas-puff discharges in Hanbit are analyzed with the two dimensional Monte-Carlo simulation code coupled with a simple parallel plasma confinement formula. The radial ion temperature and power loss profiles are also derived. The global particle balance is between the plasma pumping and the recycling processes, hence the initially puffed amount of gas has negligible contribution to the total particle source.