ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Vittorio Violante, Amalia Torre, Giuseppe Dattoli
Fusion Science and Technology | Volume 34 | Number 2 | September 1998 | Pages 156-162
Technical Paper | doi.org/10.13182/FST98-A62
Articles are hosted by Taylor and Francis Online.
The dynamics of deuterons inside a palladium lattice around tetrahedral sites at high deuterium concentration is studied by using both a classical description and a quantum mechanical representation, and the results are compared. The classical representation takes advantage of the similarity between the electrodynamic confinement of charged particles stored in a quadrupolar radio-frequency trap and the palladium lattice. The quantum mechanical description of the dynamics of a charged particle interacting with another charged particle within a lattice radio-frequency trap is carried out by solving the time-dependent Schrödinger equation with a numerical procedure. Both descriptions produce an interaction effect between the deuterons inside the metal lattice.