ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Vittorio Violante, Amalia Torre, Giuseppe Dattoli
Fusion Science and Technology | Volume 34 | Number 2 | September 1998 | Pages 156-162
Technical Paper | doi.org/10.13182/FST98-A62
Articles are hosted by Taylor and Francis Online.
The dynamics of deuterons inside a palladium lattice around tetrahedral sites at high deuterium concentration is studied by using both a classical description and a quantum mechanical representation, and the results are compared. The classical representation takes advantage of the similarity between the electrodynamic confinement of charged particles stored in a quadrupolar radio-frequency trap and the palladium lattice. The quantum mechanical description of the dynamics of a charged particle interacting with another charged particle within a lattice radio-frequency trap is carried out by solving the time-dependent Schrödinger equation with a numerical procedure. Both descriptions produce an interaction effect between the deuterons inside the metal lattice.