ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
E. P. Kruglyakov, G. I. Dimov, A. A. Ivanov, V. S. Koidan
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 1-8
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A600
Articles are hosted by Taylor and Francis Online.
At present, in the Budker Institute of Nuclear Physics there is in operation the most complete set of modern mirror machines based on different principles of plasma confinement. This set includes the multi-mirror system GOL-3 for confinement of dense plasma heated by relativistic electron beam, the gas dynamic trap (GDT) for confinement of collisional plasma and anisotropic fast ions, and the ambipolar trap AMBAL-M.Mirrors have a number of advantages in comparison with the closed magnetic systems like tokamak, stellarator, etc. The most important are the following. The effects of disruptions are not appeared in mirrors. There are no divertor problems in them. Plasma pressure in a mirror device can be comparable with magnetic field pressure. As to the multi-mirror system, in this case, the value can be even significantly higher than unity (the so called <<wall confinement>>). At last, mirrors are convenient for direct conversion of energy of charged particles leaving out the ends. This circumstance can turn out to be especially important in future <<low neutron>> schemes of fusion reactors.In principle, mirrors are very attractive from the engineering point of view, if the plasma confined in axisymmetric magnetic systems would be MHD stable. At present, the problem of MHD stability has already been solved for all axisymmetric traps designed in Novosibirsk. At least, the value [approximately or equal to] 0.4 was obtained in these traps without any indications of macroscopic instability development.Some important results were obtained recently in the GOL-3 experiments. A specific mechanism of reduction of longitudinal electron thermal conductivity was detected. Recently, the magnetic system of the GOL-3 device was reconstructed into multi-mirror configuration. In this configuration, a new mechanism of fast ion heating was observed. As a result, the ion temperature was increased from a few eV up to 1 keV and the confinement time significantly increased (up to 1ms). These results were obtained for plasma density of 1021m-3.The experiments on the GDT device are directed to the solution of the problem of creation of a 14 MeV high power neutron source. At present, new powerful neutral beam injectors for this device are under construction. After installing these neutral beams at GDT, the electron temperature of plasma should increase up to 300 eV. It means that calculated neutron flux for the case of D-T reaction will be about 0.5 MW/m2. If this value will be obtained, it will be immediately possible to begin the design of final stage of high power neutron source.In the paper, the status of all mirror traps in Novosibirsk is presented and description of the main experiments is given.