ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
IAEA to help monitor plastic pollution in the Galapagos Islands
The International Atomic Energy Agency announced that its Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative has partnered with Ecuador’s Oceanographic Institute of the Navy (INOCAR) and Polytechnic School of the Coast (ESPOL) to build microplastic monitoring and analytical capacity to address the growing threat of marine microplastic pollution in the Galapagos Islands.
Lali G. Chatterjee
Fusion Science and Technology | Volume 34 | Number 2 | September 1998 | Pages 147-150
Technical Paper | doi.org/10.13182/FST98-A60
Articles are hosted by Taylor and Francis Online.
Physics similar to the r-process mechanism of forming heavy elements in core-collapse supernovas is invoked to explain the recent observation of nuclear transmutations in thin-film nickel coatings during electrolysis.It is suggested that electrolysis could catalyze weak interactions of the electron capture type in thin films, resulting in an enhanced rate for the weak capture of electrons by protons to form real or virtual neutrons. These could subsequently be absorbed by the nuclei in the metal, and the neutrinos created to satisfy conservation laws would escape detection. The neutron-rich nuclei could stabilize by various beta decay channels similar to the r-process, and this model could explain the observed transmuted elements as well as the absence of radiation.