ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
T. J. Dolan, K. Yamazaki, A. Sagara
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 60-72
Technical Paper | doi.org/10.13182/FST05-A599
Articles are hosted by Taylor and Francis Online.
The Physics-Engineering-Cost (PEC) code has been updated to include blanket-shield design data, a new cost structure, new unit costs, and improved algorithms. It is used here to estimate component masses and costs for heliotron reactors, which have continuous helical coils like the Large Helical Device.Relative to a "base case," we study how the cost of electricity (COE) varies with various parameters: central electron temperature, coil width/depth ratio, plasma-coil distance, plasma profile shapes, beta, maximum magnetic field, neutron wall load, net power output, plasma impurity content, plasma aspect ratio, and blanket lifetime.The COE decreases strongly with increasing beta but tends to level out at beta values >6%. At a fixed output power, higher beta values make the reactor smaller, which decreases the energy confinement time, making ignition more difficult. The resulting COE estimates are compared with that of the Stellarator Power Plant Study.