ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
House Dems introduce clean energy bill for net zero
Democratic leaders in the House last week introduced the Climate Leadership and Environmental Action for our Nation’s Future Act (the CLEAN Future Act, or H.R. 1512), a nearly 1,000-page piece of climate change–focused legislation establishing, among other things, a federal clean electricity standard that targets a 50 percent reduction in greenhouse gas emissions from 2005 levels by 2030 and net-zero emissions by 2050.
The bill, a draft version of which was released in January 2020, presents a sweeping set of policy proposals, both sector-specific and economy-wide, to meet those targets. The final version includes a number of significant revisions to bring the legislation into closer alignment with President Biden’s climate policy campaign pledges. For example, the bill’s clean electricity standard would require all retail electricity suppliers to provide 80 percent clean energy to consumers by 2030 and 100 percent by 2035. (A six-page fact sheet detailing the updates is available online.)
H. Huang, B. A. Vermillion, L. C. Brown, G. E. Besenbruch, D. T. Goodin, R. W. Stemke, R. B. Stephens
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 46-55
Technical Paper | dx.doi.org/10.13182/FST05-A597
Articles are hosted by Taylor and Francis Online.
Of the building blocks of an inertial fusion energy (IFE) plant, target fabrication remains a significant credibility issue. For this reason, an extensive parametric study has been conducted on mass production of glow discharge polymer (GDP) shells in a vertical fluidized bed. Trans-2-butene was used as a reactant gas with hydrogen as a diluting and etching agent. Coating rates in the range of 1 to 2 m/h were demonstrated on batches of 30 shells where National Ignition Facility-quality surfaces were obtained for 3- to 5-m-thick coatings. Thick coatings up to 325 m were also demonstrated that are visually transparent, without void and stress fracture. A phenomenological understanding of the GDP growth mechanisms to guide future experiments was further established. Specifically, gas-phase precipitation and high-impact collisions were identified as the main surface-roughening mechanisms. The former produces dense cauliflower-like surface patterns that can be eliminated by adjusting the gas flow rates and the flow ratio. The latter produces isolated domelike surface defects that can be reduced by introducing concerted motion between the shells. By converting from a vertical to a horizontal configuration, fully transparent coatings were obtained on 350 shells. Collisions in a fluidized bed have been identified as the limiting factor in meeting IFE specifications, and a related-rotary kiln technique is recommended for scale-up.