ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mofreh R. Zaghloul, A. René Raffray
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 27-45
Technical Paper | doi.org/10.13182/FST05-A596
Articles are hosted by Taylor and Francis Online.
This paper considers the physical processes and material removal mechanisms associated with the energy deposition in an inertial fusion energy liquid wall from the prompt X-ray spectrum of an indirect-drive inertial fusion target. These are important as the ablated material could generate aerosol in the chamber, which without adequate chamber clearing could result in a chamber environment unsuitable for driver propagation and/or target injection. Simple computations were used to identify and characterize the important material removal mechanisms relevant to the energy deposition regime under consideration. Explosive boiling was found to be the most relevant thermal response mechanism due to the high heating rate from the X-ray photon energy deposition. Investigation showed that explosive boiling occurs when the material temperature approaches the critical temperature and has a threshold value that can be derived from the material equation of state or the rate of homogeneous nucleation. Another important mechanism is mechanical spall that can result when shock wave-induced local tensile stresses exceed the spall strength of the material. Both explosive boiling and mechanical spall occur upon crossing the thermodynamic stability border (spinodal curve) either through rapid heating or through overexpansion of the material.Relevant material properties of the candidate liquid wall materials needed to perform the present assessment are compiled, derived, and presented. A simple energy deposition volumetric analysis is used to estimate both thermally ablated and mechanically spalled regions of the liquid wall material. The choice of liquid/wall combination is found to play an important role in reducing or eliminating the occurrence of spall in the liquid wall.