ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Tomohiro Kinjyo, Masabumi Nishikawa
Fusion Science and Technology | Volume 46 | Number 4 | December 2004 | Pages 561-570
Technical Paper | doi.org/10.13182/FST04-A591
Articles are hosted by Taylor and Francis Online.
This paper proposes a model to explain tritium release behavior of an irradiated Li4SiO4 sample made by Forschungszentrum Karlsruhe. The release curves were obtained in a series of experiments carried out using out-pile temperature programmed desorption techniques in the Kyoto University Reactor (KUR). Tritium release curves obtained for different purge gas compositions (N2, N2 + H2, N2 + H2O) were compared for selection of suitable conditions to determine the apparent diffusivity of tritium in a crystal grain of Li4SiO4.In the model formation, some mass transfer steps in the bulk of the crystal grain and those on the surface of the grain were taken into account, which were diffusion of tritium in the grain, adsorption and desorption of water on the surface of the grain, two types of isotope exchange reactions, and water formation reaction by the addition of hydrogen to the purge gas.Diffusivities of tritium in the crystal grain of Li4SiO4 were estimated using a curve-fitting method applied to the release curve obtained when the irradiated sample was purged by nitrogen with water vapor because of the fastest tritium release rate observed.