ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today named 10 companies that want to get a test reactor critical within the next year using the DOE’s offer to authorize test reactors outside of national laboratories. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
L. Bromberg, ARIES-IFE Team
Fusion Science and Technology | Volume 46 | Number 3 | November 2004 | Pages 494-505
Technical Paper | ARIES-IFE | doi.org/10.13182/FST04-A585
Articles are hosted by Taylor and Francis Online.
The environment close to the chamber of heavy ion inertial fusion energy reactors imposes severe constraints on magnets used for final focusing magnets. Space is at a premium, requiring close proximity of adjacent magnets, making magnet integration imperative. In addition, the high radiation flux imposes stringent shielding requirements. In this paper, the options for final focusing magnet topologies are described. Implications of using both high-temperature superconductors and conventional low-temperature superconductors are investigated. The use of high-temperature superconducting materials may offer an attractive, although speculative, opportunity for a fundamentally different approach to magnet construction, leading to either lower cost or reduced maintenance.