ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
A. R. Raffray, S. I. Abdel-Khalik, D. Haynes, F. Najmabadi, P. Sharpe, M. Yoda, M. Zaghloul, ARIES-IFE Team
Fusion Science and Technology | Volume 46 | Number 3 | November 2004 | Pages 438-450
Technical Paper | ARIES-IFE | doi.org/10.13182/FST04-A582
Articles are hosted by Taylor and Francis Online.
A thin-liquid-wall configuration combines the attractive features of a solid wall with the advantages of a renewable armor to accommodate the threat spectra produced by inertial fusion energy targets. Key design issues for successful implementation of the thin-liquid-film wall protection schemes are the reestablishment of the thin liquid armor and the state of the chamber environment prior to each shot relative to the requirements imposed by the driver and target thermal and injection control. Experimental and numerical studies have been conducted to examine the fluid dynamic aspects of thin-liquid-film protection systems with either radial injection through a porous first wall or forced flow of a thin liquid film tangential to a solid first wall. Analyses were also conducted to help assess and understand key processes influencing the chamber environment, including ablation mechanisms that could lead to aerosol formation and the behavior of such aerosol in the chamber. Results from these studies are described in this paper.