ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Chen Li, Bo Huang, Qi Yang, Yong Song, Tao Zhou, JieQiong Jiang, FDS Consortium
Fusion Science and Technology | Volume 81 | Number 4 | May 2025 | Pages 350-365
Regular Research Article | doi.org/10.1080/15361055.2024.2425917
Articles are hosted by Taylor and Francis Online.
A deuterium-tritium fusion neutron generator can produce high-intensity monoenergetic neutrons, which is important for the research and development of nuclear technology, and the neutron target is one of the crucial components of a neutron generator. For the neutron target, the most important technical index is the temperature of the target. Excessive temperature could impact the efficiency of nuclear reactions on the target surface and lead to target damage. Consequently, the thermal-hydraulic performance of the neutron target is significant for the performance of the neutron generator.
In this paper, a curved channel with surface grooves was designed for the neutron target of a high-intensity neutron generator under design. The influence and mechanism of the curved angle and groove angle on the thermal-hydraulic performance of the minichannel were studied with the computational fluid dynamics method. The results indicated that a 45-deg curved channel with 135-deg surface grooves could enhance the turbulence within the minichannel, effectively improving the heat transfer performance of the neutron target with less pressure loss. Thus, the neutron target could withstand a higher-energy deuterium beam bombardment, increase neutron yield, and ease the pressure requirements on the cooling water pumps and sealing components.