ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
Yue Xu, Xiaoping Tian, Hongyan Tan, Haiying Fu, Zheng Gong, Junjie Ni, Laima Luo
Fusion Science and Technology | Volume 81 | Number 4 | May 2025 | Pages 321-330
Regular Research Article | doi.org/10.1080/15361055.2024.2397220
Articles are hosted by Taylor and Francis Online.
In steady-state operation of fusion reactors, eroded materials and contaminations, especially carbon (C), may deposit on the surface of plasma-facing components. In this work, the effects of C deposition on hydrogen isotope permeation behavior through tungsten (W)–coated reduced activation ferritic/martensitic (RAFM) steel were systematically investigated by plasma-driven permeation (PDP) measurements in the temperature range of 633 to 893 K. A C deposition layer with thickness of ~200 nm was prepared by magnetron sputtering to simulate the formation of C impurities in the first-wall area of tokamaks. The implantation depth of incident deuterium (D) ions was estimated to be <10 nm at incident energy of 114 eV. Deuterium effective diffusion coefficients (Deff’s) for W-coated RAFM steel with/without a C layer were obtained. It was found that the C layer tended to increase Deff in the low-temperature region of ~675 to 820 K. At high temperature, however, Deff was measured be lower than that without a C layer. Nevertheless, the addition of a C layer had no significant effect on Deff compared to the W coating alone with respect to bare RAFM steels. For steady-state D-PDP flux, it was found that the C layer significantly decreased D permeation flux at low temperature. But, the permeation flux difference between the samples with/without a C layer became smaller with increasing temperature, indicating that the influence of C deposition on D permeation was negligible at high temperature. Similar D-PDP behavior was detected as increasing the incident ion flux by means of increasing plasma discharge power. Surface reemission of absorbed D as well as the D concentration gradient throughout the sample was found to be influenced by C deposition; therefore, D permeation flux changed correspondingly.