ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Rixin Wang, Yongjian Xu, Caichao Jiang, Lizhen Liang, Wei Liu, Chundong Hu, Jun Tao
Fusion Science and Technology | Volume 81 | Number 3 | April 2025 | Pages 259-268
Research Article | doi.org/10.1080/15361055.2024.2383089
Articles are hosted by Taylor and Francis Online.
For the negative-ion-based neutral beam injection system, the direct current (DC) high-voltage transmission line (HVTL) is the link between the radio frequency (RF) negative-ion source system and the power supply system, which not only realizes the function of the power transmission between the power supply system and the RF negative-ion source system, but also provides transmission channels for high-pressure cooling water, working gas, and the measurement and control signals needed for the operation of the RF negative-ion sources. In this study, the experimental sample for the DC HVTL is developed based on the insulation simulation design, and an insulation performance evaluation test bed of the experimental sample is designed and built. The insulation performances of the experimental sample at different SF6 gas pressures are investigated, and the leakage current laws of the experimental sample at different applied voltages and different SF6 gas pressures are obtained. The test results show that the maximum leakage current is 472 μA at a loading voltage of 500 kV, which proves that the experimental sample for the DC HVTL satisfies the requirements of the insulation design.