ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Rixin Wang, Yongjian Xu, Caichao Jiang, Lizhen Liang, Wei Liu, Chundong Hu, Jun Tao
Fusion Science and Technology | Volume 81 | Number 3 | April 2025 | Pages 259-268
Research Article | doi.org/10.1080/15361055.2024.2383089
Articles are hosted by Taylor and Francis Online.
For the negative-ion-based neutral beam injection system, the direct current (DC) high-voltage transmission line (HVTL) is the link between the radio frequency (RF) negative-ion source system and the power supply system, which not only realizes the function of the power transmission between the power supply system and the RF negative-ion source system, but also provides transmission channels for high-pressure cooling water, working gas, and the measurement and control signals needed for the operation of the RF negative-ion sources. In this study, the experimental sample for the DC HVTL is developed based on the insulation simulation design, and an insulation performance evaluation test bed of the experimental sample is designed and built. The insulation performances of the experimental sample at different SF6 gas pressures are investigated, and the leakage current laws of the experimental sample at different applied voltages and different SF6 gas pressures are obtained. The test results show that the maximum leakage current is 472 μA at a loading voltage of 500 kV, which proves that the experimental sample for the DC HVTL satisfies the requirements of the insulation design.