ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Restart progress and a new task force in Iowa
This week, Iowa Gov. Kim Reynolds signed an executive order to form the Iowa Nuclear Energy Task Force, the purpose of which will be to “advise her, the General Assembly, and relevant state agencies on the development and advancement of nuclear energy technologies and infrastructure in the state.”
Saira Gulfam, Kamran Ahmad, Muhammad Bilal, Muhammad Taimoor Saleem, Zahoor Ahmad
Fusion Science and Technology | Volume 81 | Number 3 | April 2025 | Pages 232-243
Research Article | doi.org/10.1080/15361055.2024.2392412
Articles are hosted by Taylor and Francis Online.
During tokamak operation, the structural integrity of the vacuum vessel (VV) of Metallic Tokamak-I (MT-I), a small spherical tokamak, was evaluated. This evaluation involved simulating real experimental data of electromagnetic (EM) and structural loads using the ANSYS platform. Internal heat generation, induced currents, and inertial and pressure loads in the VV were analyzed to determine their effects on the VV. This analysis was conducted on a 180-deg sector model over a 10-ms-event period. To create multiple checkpoint events, the plasma current was assumed to be formed at variable positions of the VV, hence inducing variable current for each event. The events are divided into four cases based on the radial and vertical displacements of plasma. The response of the VV structure was calculated using coupling of EM and structural modules of ANSYS. It is observed from the numerical results that the maximum stress on the VV is in a safe range and that the temperature rise on the vessel can be reduced by natural convection only if the event is ended in 10 ms. A prolonged event can result in permanent deformation in the VV structure. A disruption event on the limiter region is also studied.