ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Akash Tiwari, Shilan Jin, Shashank Galla, Bhaskar Botcha, Sean Hayes, Monika Biener, Kshitij Bhardwaj, Satish Bukkapatnam, Yu Ding, Alexos Antonios, Pierre Baldi, Suhas Bhandarkar
Fusion Science and Technology | Volume 81 | Number 3 | April 2025 | Pages 219-231
Research Article | doi.org/10.1080/15361055.2024.2385224
Articles are hosted by Taylor and Francis Online.
In inertial confinement fusion (ICF) experiments seeking output gains of unity and beyond, the quality of the ablator capsule is paramount for minimizing the hydrodynamic mix that quenches the central hot spot. Defects in the form of foreign particles or missing mass on the surface and within the wall of the capsule are primary offenders. High-density carbon capsules made for ICF experiments at the National Ignition Facility are precision polished to achieve surface smoothness on the order of a few nanometers as well as to minimize isolated defects in the form of pits. Given the critical role of this process, we are developing smart manufacturing techniques with the goal of elevating the efficiency of this process.
Our approach is to use MEMS (micro-electromechanical systems)–based sensors to capture the fine vibration signals generated during the polishing process and combine them with synchronized visual feedback as needed. Beyond using these sensors for process monitoring, we use specific deep learning methods to analyze the data and extract correlations with both the process parameters and the final performance of the polishing run. Here, we describe the multiple fronts we have explored in this regard and the results we have gotten so far. This approach promises to have the potential to ultimately provide real-time feedback that can be used to ensure the progress of the run as well as a means for faster optimization.