ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Erick Martinez-Loran, Daniel Schwen, Benjamin W. Spencer, Jose Boedo, Eric Hollmann
Fusion Science and Technology | Volume 81 | Number 3 | April 2025 | Pages 208-218
Research Article | doi.org/10.1080/15361055.2024.2395133
Articles are hosted by Taylor and Francis Online.
Carbon pebble rods are a promising candidate for use in high heat flux regions of magnetic fusion energy reactor walls. Under high (10 to 50 MW/m2) heat loads, carbon pebble rods release hot pebbles from the exposed surface, carrying away heat as the pebble rod surface recedes. In this work, we show that the surface recession rate during heating can be adjusted by changing the mechanical strength of the extruded rods, modifying the heat removal rate; this is accomplished here by varying the fill fraction of the inter-pebble matrix. A three-dimensional finite element model is presented that captures many experimental observations, including the sphere temperature and the surface recession rate. The model predicts that pebble release is caused by thermally driven crack propagation through the matrix and that the matrix strength against breaking is the single most important material parameter setting the pebble release rate; this prediction is supported by experimental results.