ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Erick Martinez-Loran, Daniel Schwen, Benjamin W. Spencer, Jose Boedo, Eric Hollmann
Fusion Science and Technology | Volume 81 | Number 3 | April 2025 | Pages 208-218
Research Article | doi.org/10.1080/15361055.2024.2395133
Articles are hosted by Taylor and Francis Online.
Carbon pebble rods are a promising candidate for use in high heat flux regions of magnetic fusion energy reactor walls. Under high (10 to 50 MW/m2) heat loads, carbon pebble rods release hot pebbles from the exposed surface, carrying away heat as the pebble rod surface recedes. In this work, we show that the surface recession rate during heating can be adjusted by changing the mechanical strength of the extruded rods, modifying the heat removal rate; this is accomplished here by varying the fill fraction of the inter-pebble matrix. A three-dimensional finite element model is presented that captures many experimental observations, including the sphere temperature and the surface recession rate. The model predicts that pebble release is caused by thermally driven crack propagation through the matrix and that the matrix strength against breaking is the single most important material parameter setting the pebble release rate; this prediction is supported by experimental results.