ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
Junjie Zhao, Zhaochun Zhang, Haibo Guo, Yang Wang
Fusion Science and Technology | Volume 81 | Number 3 | April 2025 | Pages 191-207
Research Article | doi.org/10.1080/15361055.2024.2369828
Articles are hosted by Taylor and Francis Online.
The behavior of foreign interstitial hydrogen and helium atoms and its effect on the physical properties of the tungsten/beryllium interface structure were computationally studied by first-principles calculations. Briefly, as part of our study of helium irradiation damage and hydrogen detention, the following properties were calculated: (1) the electronic properties of the tungsten/beryllium interface structure with a single interstitial hydrogen or helium atom and Hen vacancy or Hn vacancy complexes, and (2) the isotropy (polycrystalline) elastic modulus (bulk, torsion, Young’s modulus), anisotropy factor and minimum thermal conductivity of the previously described tungsten/beryllium interface systems.
This study found that defect atoms are more likely to be concentrated in beryllium, but the tungsten layer is more sensitive to changes in mechanical properties caused by interstitial atoms. The ability of the beryllium vacancies to capture interstitial atoms is smaller than that of the tungsten vacancies. Based on the computational results, a preliminary assumption of the judgment of the tungsten/beryllium interface structure on the resistivity for plasma-facing materials is introduced. These computational studies provide a critical evaluation of the radiation resistivity and hydrogen retention of tungsten/beryllium interface materials. The calculated interface properties can be incorporated into radiation damage resistance property evaluation systems to develop and test tungsten-based composite materials.