ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Junjie Zhao, Zhaochun Zhang, Haibo Guo, Yang Wang
Fusion Science and Technology | Volume 81 | Number 3 | April 2025 | Pages 191-207
Research Article | doi.org/10.1080/15361055.2024.2369828
Articles are hosted by Taylor and Francis Online.
The behavior of foreign interstitial hydrogen and helium atoms and its effect on the physical properties of the tungsten/beryllium interface structure were computationally studied by first-principles calculations. Briefly, as part of our study of helium irradiation damage and hydrogen detention, the following properties were calculated: (1) the electronic properties of the tungsten/beryllium interface structure with a single interstitial hydrogen or helium atom and Hen vacancy or Hn vacancy complexes, and (2) the isotropy (polycrystalline) elastic modulus (bulk, torsion, Young’s modulus), anisotropy factor and minimum thermal conductivity of the previously described tungsten/beryllium interface systems.
This study found that defect atoms are more likely to be concentrated in beryllium, but the tungsten layer is more sensitive to changes in mechanical properties caused by interstitial atoms. The ability of the beryllium vacancies to capture interstitial atoms is smaller than that of the tungsten vacancies. Based on the computational results, a preliminary assumption of the judgment of the tungsten/beryllium interface structure on the resistivity for plasma-facing materials is introduced. These computational studies provide a critical evaluation of the radiation resistivity and hydrogen retention of tungsten/beryllium interface materials. The calculated interface properties can be incorporated into radiation damage resistance property evaluation systems to develop and test tungsten-based composite materials.