ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Wen-Xuan Zhang, Hong-Na Zhang, Xiao-Bin Li, Feng-Chen Li
Fusion Science and Technology | Volume 81 | Number 2 | February 2025 | Pages 144-160
Research Article | doi.org/10.1080/15361055.2024.2343975
Articles are hosted by Taylor and Francis Online.
The typical dual-coolant lead-lithium (PbLi) design of a liquid breeder blanket in a magnetic confinement fusion reactor involves the utilization of PbLi as the working fluid to effectively remove neutron heat. However, the nonuniform heating of neutrons with a significant radial gradient induces a buoyancy effect, resulting in the formation of vortexes ices within the downward flow duct. These vortexes have an adverse impact on the heat and mass transfer characteristics of the magnetohydrodynamic (MHD) flow of PbLi. The simulations in this work employed a MHD buoyant mixed-convection solver to resolve the characteristics of PbLi flow and a one-way coupled Lagrangian method to analyze the qualitative characteristics of tritium transport in PbLi flow. The results indicate that buoyant reverse flow can create vortexes that contain hot spots in the PbLi fluid, which can significantly impede heat transport. Additionally, the vortex causes tritium recirculation in the flow field and retention, resulting in adverse effects on tritium transport.