ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Wen-Xuan Zhang, Hong-Na Zhang, Xiao-Bin Li, Feng-Chen Li
Fusion Science and Technology | Volume 81 | Number 2 | February 2025 | Pages 144-160
Research Article | doi.org/10.1080/15361055.2024.2343975
Articles are hosted by Taylor and Francis Online.
The typical dual-coolant lead-lithium (PbLi) design of a liquid breeder blanket in a magnetic confinement fusion reactor involves the utilization of PbLi as the working fluid to effectively remove neutron heat. However, the nonuniform heating of neutrons with a significant radial gradient induces a buoyancy effect, resulting in the formation of vortexes ices within the downward flow duct. These vortexes have an adverse impact on the heat and mass transfer characteristics of the magnetohydrodynamic (MHD) flow of PbLi. The simulations in this work employed a MHD buoyant mixed-convection solver to resolve the characteristics of PbLi flow and a one-way coupled Lagrangian method to analyze the qualitative characteristics of tritium transport in PbLi flow. The results indicate that buoyant reverse flow can create vortexes that contain hot spots in the PbLi fluid, which can significantly impede heat transport. Additionally, the vortex causes tritium recirculation in the flow field and retention, resulting in adverse effects on tritium transport.