ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Jürgen Baldzuhn, Larry Robert Baylor, James F. Lyon, W7-AS Team
Fusion Science and Technology | Volume 46 | Number 2 | September 2004 | Pages 348-354
Technical Papers | Stellarators | doi.org/10.13182/FST04-A574
Articles are hosted by Taylor and Francis Online.
Deep particle fueling into a fusion-relevant plasma can be performed by the injection of cryogenic hydrogen or deuterium pellets. However, the penetration depth and fueling efficiency can be greatly limited when enhanced pellet ablation by fast particles occurs. Only a limited database exists for the penetration depth of ice pellets into stellarators. The penetration depth is measured during pellet injection into purely electron cyclotron resonance heated plasmas on the Wendelstein 7-AS (W7-AS) stellarator. These data are compared with the International Pellet Ablation Database (IPADBASE). Good agreement is found, if the neutral gas shielding model is applied for the scaling law of the penetration depth. The experimental data from W7-AS are used as a basis for planning a new pellet injection system for the Wendelstein 7-X stellarator, which is now under construction.