ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Haihong Huang, Zhao Chen, Haixin Wang
Fusion Science and Technology | Volume 81 | Number 1 | January 2025 | Pages 61-72
Research Article | doi.org/10.1080/15361055.2024.2339666
Articles are hosted by Taylor and Francis Online.
The Experimental Advanced Superconducting Tokamak (EAST) fast control power supply (FCPS) is an important device for controlling the vertical displacement of plasma during the nuclear fusion power generation process, adopting a multiple H-bridge invertor branch parallel operation structure to output total current. At the beginning of each shot of plasma discharge, FCPS works in open-loop voltage control mode (VCM) or closed-loop current control mode (CCM) determined by the plasma control system to output current for exciting the load coil, to achieve plasma vertical displacement control. VCM has the characteristics of fast dynamic response speed but poor consistency of branch current and insufficient branch current control accuracy and stability because of open-loop control. CCM has the characteristics of high branch current control accuracy but poor dynamic response and robustness because of control delay and control parameters determined based on engineering experience. To achieve fast and robust control, an improved voltage control method (IVCM) is proposed by combining the advantages of VCM and CCM. In the beginning of establishing the output current, FCPS operates in VCM, and rapid establishment of the output current is ensured. After the output current rapidly increases to the critical value, closed-loop current control is added to VCM to ensure the accuracy of output current control. In closed-loop current control, linear super-twisting sliding mode control is designed to achieve fast and robust control, ensuring good consistency and fast dynamic response performance of each branch current. Simulations and experiments verify that the designed IVCM has better compatibility characteristics in output current stability, control accuracy, and consistency of each branch current compared to VCM.