ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
IAEA to help monitor plastic pollution in the Galapagos Islands
The International Atomic Energy Agency announced that its Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative has partnered with Ecuador’s Oceanographic Institute of the Navy (INOCAR) and Polytechnic School of the Coast (ESPOL) to build microplastic monitoring and analytical capacity to address the growing threat of marine microplastic pollution in the Galapagos Islands.
Sebahattin Ünalan, S. Orhan Akansu
Fusion Science and Technology | Volume 34 | Number 2 | September 1998 | Pages 109-127
Technical Paper | doi.org/10.13182/FST98-A57
Articles are hosted by Taylor and Francis Online.
Effects on the neutronic performance of the hybrid blanket rejuvenating light water reactor and CANDU spent fuels of moderators (Be, C, and D2O) inserted between the fusion chamber and the fissile zone of deuterium-deuterium and deuterium-tritium-driven hybrid reactor were investigated to obtain the best rejuvenation performance and more energy production. The calculations were carried out for different thicknesses of the moderator zone (DR). In addition, to eliminate local heating, the analysis was also repeated for reduced radius of the spent fuel rods in the first and the second fuel rows of the fissile zone.It was observed that while Be and D2O improved the rejuvenation performance and energy production, C had a negligible effect. All moderators decreased the tritium breeding capability of the hybrid reactor with increasing DR values. To breed enough tritium (tritium breeding ratio: >1.05), the moderator zone thickness was determined to be smaller than DR = 6 cm as an average value. The rejuvenation performance reached a maximal value of DR = ~4 cm, increased two times in comparison with the blanket without moderator material, although the energy production was almost constant. However, to produce more energy, DR has to be ~20 cm. The energy releasing in the hybrid blanket with DR [approximately equal to] 20 cm is nearly two times that in the hybrid blanket without moderator material. The high energy production caused the fuel rod temperatures in the first fuel row of the fissile zone to reach the melting point. Hence, as a positive result, radiation damage in the first wall did not vary. However, the melting problem was eliminated by reducing the radius of the fuel rods in the first and second fuel rows, and the neutronic performance of the hybrid reactor has not been affected by this radius reduction.