ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC posts hearing request notice for Belews Creek ESP application
An opportunity to request an adjudicatory hearing for Duke Energy Carolinas’ early site permit (ESP) application for the Belews Creek site in Stokes County, N.C., has been announced by the Nuclear Regulatory Commission. The notice of the opportunity was published February 9 in the Federal Register. The deadline to file a request for a hearing or petition for leave to intervene is April 10, 2026.
V. Gayathri Devi, Kannan Aravamudan, Amit Sircar
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 1031-1044
Research Article | doi.org/10.1080/15361055.2023.2284409
Articles are hosted by Taylor and Francis Online.
A computational investigation of Cu-, Ni-, and Ag-introduced ZSM-5 as potential hydrogen storage materials for nuclear fusion energy systems is performed. Among the 24 distinct tetrahedral sites of the monoclinic phase of ZSM-5, systematic periodic density functional theory (DFT) computations have been carried out on 15 experimentally identified T sites that show clear Al site preference and stability in high Si ZSM-5. Adsorption energies estimated from DFT studies have revealed that the T sites in the sinusoidal channels T4 and T10 are the most stable for including all three metal ions. Hence, these should also be considered as potential active sites for dihydrogen binding investigations in addition to the common T12 site in the intersection.
The average hydrogen binding energies at these representative T sites were −79 to −45 kJ/mol, which correlates well with both the metal-H2 distance and H-H bond elongation distance. The computed hydrogen bond stretching frequency values were in the 3300 to 3755 cm−1 range upon adsorption of H2 onto the Ni, Cu, and Ag, indicating Kubas-type dihydrogen complex formation. The evidence for dihydrogen binding was also obtained from investigating the σ donation and back donation between the metal ion valence orbitals and the H2σ, H2σ* orbitals through projected density of states and natural bond order analysis. Our analysis indicates that Ni is better stabilized in the framework sites and is considered a potential candidate for dihydrogen binding.