ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC posts hearing request notice for Belews Creek ESP application
An opportunity to request an adjudicatory hearing for Duke Energy Carolinas’ early site permit (ESP) application for the Belews Creek site in Stokes County, N.C., has been announced by the Nuclear Regulatory Commission. The notice of the opportunity was published February 9 in the Federal Register. The deadline to file a request for a hearing or petition for leave to intervene is April 10, 2026.
Hiroshige Kumamaru
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 984-1000
Research Article | doi.org/10.1080/15361055.2023.2273041
Articles are hosted by Taylor and Francis Online.
Relating to the design of liquid-metal blankets in a fusion reactor, numerical calculations have been performed on liquid-metal magnetohydrodynamic (MHD) flows in rectangular ducts with sudden expansions. Conservation equations of fluid mass and fluid momentum, together with the Poisson equation for electrical potential, have been solved numerically. The numerical calculations have been performed for Hartmann (Ha) numbers up to the order of 10000 and expansion ratios up to 4. The pressure loss through the expansion has been estimated by the loss coefficient ζ divided by the interaction parameter N, i.e., ζ/N. The loss coefficient ζ/N through the expansion parallel to the magnetic field is much larger than that through the expansion perpendicular to the magnetic field. The loss coefficient ζ/N increases consistently with the expansion ratio. The loss coefficient ζ/N does not change very much with the interaction parameter N and the wall conductance ratio.