ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DNFSB’s Summers ends board tenure, extending agency’s loss of quorum
Lee
Summers
The Defense Nuclear Facilities Safety Board, the independent agency responsible for ensuring that Department of Energy facilities are protective of public health and safety, announced that the board’s acting chairman, Thomas Summers, has concluded his service with the agency, having completed his second term as a board member on October 18.
Summers’ departure leaves Patricia Lee, who joined the DNFSB after being confirmed by the Senate in July 2024, as the board’s only remaining member and acting chair. Lee’s DNFSB board term ends in October 2027.
Hiroshige Kumamaru
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 984-1000
Research Article | doi.org/10.1080/15361055.2023.2273041
Articles are hosted by Taylor and Francis Online.
Relating to the design of liquid-metal blankets in a fusion reactor, numerical calculations have been performed on liquid-metal magnetohydrodynamic (MHD) flows in rectangular ducts with sudden expansions. Conservation equations of fluid mass and fluid momentum, together with the Poisson equation for electrical potential, have been solved numerically. The numerical calculations have been performed for Hartmann (Ha) numbers up to the order of 10000 and expansion ratios up to 4. The pressure loss through the expansion has been estimated by the loss coefficient ζ divided by the interaction parameter N, i.e., ζ/N. The loss coefficient ζ/N through the expansion parallel to the magnetic field is much larger than that through the expansion perpendicular to the magnetic field. The loss coefficient ζ/N increases consistently with the expansion ratio. The loss coefficient ζ/N does not change very much with the interaction parameter N and the wall conductance ratio.