ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Haihong Huang, Zhao Chen, Haixin Wang
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 941-959
Research Article | doi.org/10.1080/15361055.2023.2271226
Articles are hosted by Taylor and Francis Online.
To quickly output sufficient current for plasma excitation control, parallel operation of a structure of multiple branches is adopted in the Experimental Advanced Superconducting Tokamak (EAST) fast control power supply. During the process of parallel operation of multiple branches in engineering, a larger inductance current sharing reactor is used to suppress the circulating current for the branches, which reduces the dynamic response speed of the output current and increases economic costs. In order to achieve cost savings and improve the dynamic response speed of the output current, the parallel branch current model of the EAST fast control power supply is analyzed, and the current of each branch is reconstructed into two parts: the current flowing to the load end and the circulating current flowing to other branches. Without changing the circuit structure and increasing the additional complex communication system for each branch, observation of the current flowing to the load end from each branch is achieved. Based on the observed current, a super-twisting sliding mode controller (STSMC) is designed to suppress the circulating current flowing through branches. To realize fast output of the branch current and circulating current suppression for the branches, a new STSMC with a linear term and parameter adaptive structure is designed, speeding up the convergence rate of the whole control system. The linear term and designed parameter adaptive structure based on the sliding mode system status ensure fast convergence speed and excellent control performance of the system. Simulation and experiments show that the designed control method can achieve fast output current control for each branch and that the tracking performance of the total output current is good. While reducing the inductance of the current sharing reactor, the circulating current for the branches is effectively suppressed compared with traditional control methods. The proposed method has great significance in cost savings and performance improvement in engineering practice applications.