ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
F. Sano, T. Mizuuchi, K. Nagasaki, H. Okada, S. Kobayashi, K. Kondo, K. Hanatani, Y. Nakamura, M. Nakasuga, S. Besshou, S. Yamamoto, M. Yokoyama, Y. Suzuki, Y. Manabe, H. Shidara, T. Takamiya, Y. Ohno, Y. Nishioka, H. Yukimoto, K. Takahashi, Y. Fukagawa, H. Kawazome, M. Kaneko, S. Tsuboi, S. Nakazawa, S. Nishio, M. Yamada, Y. Ijiri, T. Senju, K. Yaguchi, K. Sakamoto, K. Tohshi, M. Shibano, V. Tribaldos, F. Tabares, T. Obiki
Fusion Science and Technology | Volume 46 | Number 2 | September 2004 | Pages 288-298
Technical Papers | Stellarators | doi.org/10.13182/FST04-A567
Articles are hosted by Taylor and Francis Online.
The H-mode transition properties of 70-GHz, 0.4-MW electron cyclotron heating (ECH) plasmas in Heliotron J have been studied with special reference to their magnetic configuration dependences, such as the edge iota dependences. Two edge iota windows for the H-mode transition were observed to be (a) 0.54 < (a)/2 < 0.56 in separatrix discharge plasmas and (b) 0.62 < (a)/2 < 0.63 in partial wall-limiter discharge plasmas if a certain threshold line-averaged electron density ([overbar]ne = 1.2-1.6 × 1019 m-3) is achieved, where (a) is the vacuum edge iota value and a is the plasma minor radius, respectively. A strong dependence of the quality of the H-mode on the edge topology conditions was revealed. The energy confinement time for the separatrix discharge plasmas was found to be enhanced beyond the normal ISS95 scaling in the transient H-mode phase, being 50% longer than that in the "before transition" phase. The window characteristics are discussed on the basis of the calculated geometrical poloidal viscous damping rate coefficient in a collisional plasma, indicating that the behavior of the viscous damping rate coefficient alone could not explain the observed characteristics. The bootstrap current properties of ECH plasmas and the relevant electron cyclotron current drive experimental results are also discussed.