ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
M. W. Paris, M. B. Chadwick
Fusion Science and Technology | Volume 80 | Number 1 | October 2024 | Pages S110-S119
Research Article | doi.org/10.1080/15361055.2024.2336813
Articles are hosted by Taylor and Francis Online.
The term “Bretscher state” may not be as familiar as “Hoyle state,” but its anthropic importance cannot be overstated. In Big Bang nucleosynthesis, the deuterium-tritium (DT) fusion reaction 3H He, enhanced by the 3/2+ resonance due to the Bretscher state, is responsible for % of primordial 4He. While this fact has been known for decades, it has not been widely appreciated, and we recently proposed that its significance be commemorated by naming the 3/2+ state after Egon Bretscher, its discoverer. The importance of the resonant nature of the DT fusion reaction has been amplified by recent activities related to the production and use of terrestrial fusion including recent, net gain shots at the National Ignition Facility. Here, we aim to highlight the anthropic importance of the 4He-producing DT reaction that plays such a prominent role in models of nucleosynthetic processes occurring in the early universe. This primordial helium serves as a source for the subsequent creation of % of the carbon, 12C and other heavier elements that comprise a substantial fraction of the human body. Further studies are required to determine a better characterization of the amount of 12C than this lower limit of 25%. Some scenarios of core stellar nucleosynthetic yield of 12C suggest that even higher percentages of carbon from primordial helium are possible.