ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
J. P. Lestone
Fusion Science and Technology | Volume 80 | Number 1 | October 2024 | Pages S99-S104
Research Article | doi.org/10.1080/15361055.2024.2339644
Articles are hosted by Taylor and Francis Online.
A review of the flurry of papers involving deuteron beams in 1933 and 1934 reveals some aspects of historical significance. A team led by Lawrence saw several mega-electron-volt protons and neutrons from deuteron-plus-deuteron (dd) fusion in 1933 before the discovery of this process by Oliphant et al. in 1934. However, Lawrence et al. failed to notice deuteron contamination in their targets, and instead incorrectly concluded that the protons and neutrons were being emitted back to back from the breakup of the deuterons in the relevant center-of-mass frame. By observing disintegrations induced by deuteron beams incident on deuterated targets, Oliphant et al. correctly identified dd fusion proceeding through an intermediate excited 4He nucleus that broke up into either back-to-back protons and tritons or back-to-back neutrons and 3He nuclei.
Here we use Oliphant et al.’s proton production rates to infer d(d,p) cross sections that are twice the known modern values. This discrepancy is likely due to our lack of knowledge of some key aspects of Oliphant et al.’s 1934 experimental setup. However, the deuterium beam energy dependence of Oliphant et al.’s d(d,p) proton production rate is clearly consistent with the quantum mechanical tunneling through the Coulomb barrier associated with the fusion of two hydrogen isotopes.