ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
J. P. Lestone, S. Finch, F. Friesen, E. Mancil, W. Tornow, J. B. Wilhelmy, M. B. Chadwick
Fusion Science and Technology | Volume 80 | Number 1 | October 2024 | Pages S89-S98
Research Article | doi.org/10.1080/15361055.2024.2342484
Articles are hosted by Taylor and Francis Online.
In order to benchmark methods used to calculate reaction-in-flight fusion reactions in inertial confinement fusion and address issues related to the first claimed observation of d(t,n)α reactions in 1938, secondary d(t,n)α reactions have been observed following d(d,p)t reactions in deuterium gas. A pulsed 200-nA, 2.2-MeV deuterium beam from the Triangle Universities Nuclear Laboratory FN tandem accelerator was injected into a cylindrical multiatmosphere deuterium gas target. The incident beam traversed along the target cylinder’s 3-cm symmetry axis after its passage through a Havar entrance foil. Two different Havar foil thicknesses were used to obtain 1.5- and 0.6-MeV deuteron beams entering the deuterium cell. The cylinder’s radius was 2 cm to allow for d(d,p)t tritons emitted perpendicular to the beam to range out in the deuterium gas. The neutron emission from the cell was observed via its time of flight to a liquid scintillator placed at various angles to the beam direction, at a distance of 243 cm. Pulse-shape-discrimination techniques were used to separate neutron and gamma-ray signals seen in the liquid scintillator. The observed probability of ~2 × 10–4 for inducing secondary d(t,n)α fusion in the gas cell per d(d,p)t reaction is consistent with theoretical expectations.