ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Alexander G. Oreshko, Anna A. Oreshko
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 904-915
Research Article | doi.org/10.1080/15361055.2024.2338020
Articles are hosted by Taylor and Francis Online.
A new method of realizing nuclear fusion reactions based on muon catalysis and the accelerative mechanism is proposed. High-energy ball lightning is periodically generated in a reactor chamber filled with deuterium gas and directed into a container containing liquid tritium. The entry of ball lightning into the tritium is accompanied by the generation of muons and mesomolecules due to a cascade process. Following the ball lightning, a high-energy plasma jet moves under the influence of traveling transverse electromagnetic waves. Deuterium ions and electrons of the jet, accelerated by intense transverse electromagnetic waves, interact with the tritium. Nuclear fusion reactions occur with the participation of muonic molecules at very low temperature. The developed method resolves all physical and technical problems that are inherent in existing traditional methods.