ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Congress passes new nuclear funding
On January 15, in an 82–14 vote, the U.S. Senate passed an Energy and Water Development appropriations bill to fund the U.S. Department of Energy for fiscal year 2026 as part of a broader package that also funded the U.S. Army Corps of Engineers and the U.S. Bureau of Reclamation.
Alexander G. Oreshko, Anna A. Oreshko
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 904-915
Research Article | doi.org/10.1080/15361055.2024.2338020
Articles are hosted by Taylor and Francis Online.
A new method of realizing nuclear fusion reactions based on muon catalysis and the accelerative mechanism is proposed. High-energy ball lightning is periodically generated in a reactor chamber filled with deuterium gas and directed into a container containing liquid tritium. The entry of ball lightning into the tritium is accompanied by the generation of muons and mesomolecules due to a cascade process. Following the ball lightning, a high-energy plasma jet moves under the influence of traveling transverse electromagnetic waves. Deuterium ions and electrons of the jet, accelerated by intense transverse electromagnetic waves, interact with the tritium. Nuclear fusion reactions occur with the participation of muonic molecules at very low temperature. The developed method resolves all physical and technical problems that are inherent in existing traditional methods.