ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
S. Y. Kazantsev, S. N. Kuznetsov, A. Y. Maksimov, N. V. Pchelkina
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 893-903
Research Article | doi.org/10.1080/15361055.2024.2339662
Articles are hosted by Taylor and Francis Online.
An analysis of the prospects for the use of atmospheric optical communication lines at industrial nuclear energy installations, including thermonuclear (fusion) reactors and energy facilities with on-site fuel reprocessing plants, was carried out. It is shown that modern atmospheric communication terminals make it possible to implement high-speed data exchange within the perimeter of energy complexes, as well as to provide an external backup communication channel protected by use of quantum key distribution technology. The absence of the need to lay special cables through limited-access areas to organize high-speed data transmission provides a significant advantage of atmospheric communication systems over any wired communication systems. A methodology is presented for assessing the feasibility of using atmospheric optical communications at nuclear facilities, and based on long-term meteorological observations in the area where ITER (International Thermonuclear Experimental Reactor) is located, graphs of the availability of atmospheric communications are constructed. The high prospects of using atmospheric laser communication at nuclear and fusion facilities are shown.