ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Crane restart boosted by $1B LPO loan
The Department of Energy announced on November 18 that it has closed on a $1 billion loan through its Loan Programs Office to Constellation to aid in financing the restart of the 835-MWe Crane Clean Energy Center, formerly Three Mile Island-1.
S. Y. Kazantsev, S. N. Kuznetsov, A. Y. Maksimov, N. V. Pchelkina
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 893-903
Research Article | doi.org/10.1080/15361055.2024.2339662
Articles are hosted by Taylor and Francis Online.
An analysis of the prospects for the use of atmospheric optical communication lines at industrial nuclear energy installations, including thermonuclear (fusion) reactors and energy facilities with on-site fuel reprocessing plants, was carried out. It is shown that modern atmospheric communication terminals make it possible to implement high-speed data exchange within the perimeter of energy complexes, as well as to provide an external backup communication channel protected by use of quantum key distribution technology. The absence of the need to lay special cables through limited-access areas to organize high-speed data transmission provides a significant advantage of atmospheric communication systems over any wired communication systems. A methodology is presented for assessing the feasibility of using atmospheric optical communications at nuclear facilities, and based on long-term meteorological observations in the area where ITER (International Thermonuclear Experimental Reactor) is located, graphs of the availability of atmospheric communications are constructed. The high prospects of using atmospheric laser communication at nuclear and fusion facilities are shown.