ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Andrei I. Shumeiko
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 856-869
Research Article | doi.org/10.1080/15361055.2023.2227504
Articles are hosted by Taylor and Francis Online.
The development of new space missions and the growing interest in space exploration have created an urgent need to develop high-thrust propulsion systems capable of propelling spacecraft far beyond the Earth and the solar system for long periods. Electric propulsion can potentially enable space missions to reach speeds thousands of times greater than conventional high-thrust chemical rockets. However, high speed comes at the cost of low power-to-thrust efficiency when considering propulsion systems as a whole, including the power generation system, transmission lines, and thrusters, which prevents high thrust from being achieved with any conceivable power system, resulting in long acceleration times. In addition, modern electric propulsion systems rely on external power sources that suffer significant power transfer losses at the high power levels required for high thrust levels. In addition, modern electric propulsion systems suffer from a number of critical physical and engineering problems that affect thrust levels and longevity. In addition, modern electric propulsion systems do not follow the principles of generation and acceleration of plasma flow that can be observed in space and potentially borrowed for artificial applications.
This paper discusses several promising electrodeless plasma thruster concepts for high-power, high-thrust electric propulsion systems based on a combined power source/power converter/thruster architecture. These concepts have the potential to overcome modern limitations of high-power electric propulsion systems and enable new outer space missions that would not be possible with conventional thrusters.