ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Andrei I. Shumeiko
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 856-869
Research Article | doi.org/10.1080/15361055.2023.2227504
Articles are hosted by Taylor and Francis Online.
The development of new space missions and the growing interest in space exploration have created an urgent need to develop high-thrust propulsion systems capable of propelling spacecraft far beyond the Earth and the solar system for long periods. Electric propulsion can potentially enable space missions to reach speeds thousands of times greater than conventional high-thrust chemical rockets. However, high speed comes at the cost of low power-to-thrust efficiency when considering propulsion systems as a whole, including the power generation system, transmission lines, and thrusters, which prevents high thrust from being achieved with any conceivable power system, resulting in long acceleration times. In addition, modern electric propulsion systems rely on external power sources that suffer significant power transfer losses at the high power levels required for high thrust levels. In addition, modern electric propulsion systems suffer from a number of critical physical and engineering problems that affect thrust levels and longevity. In addition, modern electric propulsion systems do not follow the principles of generation and acceleration of plasma flow that can be observed in space and potentially borrowed for artificial applications.
This paper discusses several promising electrodeless plasma thruster concepts for high-power, high-thrust electric propulsion systems based on a combined power source/power converter/thruster architecture. These concepts have the potential to overcome modern limitations of high-power electric propulsion systems and enable new outer space missions that would not be possible with conventional thrusters.