ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Jianghua Wei, Yuntao Song, Kaizhong Ding, Yonghua Chen, Hui Yuan, Zhoushun Guo
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 843-855
Research Article | doi.org/10.1080/15361055.2024.2312027
Articles are hosted by Taylor and Francis Online.
Proton therapy for tumor treatment is a typical application of nuclear technology. For proton therapy systems, robotic patient positioning systems (PPSs) are increasingly used because of their high flexibility and efficiency. Most robotic PPSs are developed based on industrial robots, which have good repeatability but low absolute position accuracy (1 to 3 mm) and do not satisfy the requirement of highly precise treatment. In this study, an optimized algorithm, named the Back Propagation Neural Network (BPNN) algorithm based on particle swarm optimization, is proposed to improve the performance of absolute positioning accuracy. A comparison of the training for the traditional BPNN and the optimized algorithm is presented. A series of experiments with different payload weights and tools is implemented to validate the performance of the proposed method. The training results show that the proposed method can improve the average predicted positioning error from 0.55 to 0.38 mm. The results of the experiment with a calibration tool show that the average position error is reduced from 4.10 to 0.32 mm. The results of the experiment with a carbon fiber couch top show that the average and maximal positioning errors are 0.35 and 0.77 mm, respectively. All the results verify the feasibility of the proposed method in this study in improving the position accuracy of the robotic PPS.