ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Jianghua Wei, Yuntao Song, Kaizhong Ding, Yonghua Chen, Hui Yuan, Zhoushun Guo
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 843-855
Research Article | doi.org/10.1080/15361055.2024.2312027
Articles are hosted by Taylor and Francis Online.
Proton therapy for tumor treatment is a typical application of nuclear technology. For proton therapy systems, robotic patient positioning systems (PPSs) are increasingly used because of their high flexibility and efficiency. Most robotic PPSs are developed based on industrial robots, which have good repeatability but low absolute position accuracy (1 to 3 mm) and do not satisfy the requirement of highly precise treatment. In this study, an optimized algorithm, named the Back Propagation Neural Network (BPNN) algorithm based on particle swarm optimization, is proposed to improve the performance of absolute positioning accuracy. A comparison of the training for the traditional BPNN and the optimized algorithm is presented. A series of experiments with different payload weights and tools is implemented to validate the performance of the proposed method. The training results show that the proposed method can improve the average predicted positioning error from 0.55 to 0.38 mm. The results of the experiment with a calibration tool show that the average position error is reduced from 4.10 to 0.32 mm. The results of the experiment with a carbon fiber couch top show that the average and maximal positioning errors are 0.35 and 0.77 mm, respectively. All the results verify the feasibility of the proposed method in this study in improving the position accuracy of the robotic PPS.