ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DNFSB’s Summers ends board tenure, extending agency’s loss of quorum
Lee
Summers
The Defense Nuclear Facilities Safety Board, the independent agency responsible for ensuring that Department of Energy facilities are protective of public health and safety, announced that the board’s acting chairman, Thomas Summers, has concluded his service with the agency, having completed his second term as a board member on October 18.
Summers’ departure leaves Patricia Lee, who joined the DNFSB after being confirmed by the Senate in July 2024, as the board’s only remaining member and acting chair. Lee’s DNFSB board term ends in October 2027.
S. D. Fedorovich, Yu. V. Martynenko, V. P. Budaev, D. I. Kavyrshin, A. V. Karpov, Quang Vinh Tran, M. V. Lukashevsky, M. Yu. Nagel, K. A. Rogozin, A. A. Konkov
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 833-842
Research Article | doi.org/10.1080/15361055.2024.2339555
Articles are hosted by Taylor and Francis Online.
Tungsten and stainless steel samples were irradiated with stationary helium plasma in the plasma linear multicusp plasma device. The surface of the material is modified under the influence of helium plasma with the formation of nanostructures and microstructures on the surface. The fluence of helium ions equal to 8 × 1027 ions/m2 was achieved on the tungsten sample. Depending on the helium ion fluence, fuzzlike layers, loops, and bubbles of 20- to 500-nm scale were formed on the tungsten surface. The fuzz layer thickness depends on the duration of plasma irradiation in a wide range of fluence. Saturation of the growth of the thickness of the tungsten fuzz layer was observed at a fluence of more than 8 × 1026 ions/m2. The growth of microstructures and nanostructures on the surface of stainless steel irradiated with helium plasma was observed. The growth of nanostructured layers is explained by a theoretical model considering the dynamics of adatoms under the influence of plasma.