ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Wenjun Yang, Changlin Lan, Guoqiang Li, Xueyu Gong, Xiang Gao
Fusion Science and Technology | Volume 80 | Number 6 | August 2024 | Pages 724-730
Research Article | doi.org/10.1080/15361055.2023.2234224
Articles are hosted by Taylor and Francis Online.
As a significant input for neutronics analysis of tokamak devices, the plasma neutron source is a bridge connecting fusion plasma physics and engineering design. A plasma neutron source model is established based on the EAST plasma configuration. The maximum neutron wall loading (NWL) is near the outboard midplane and is more than ~20% that of the inboard midplane. The investigations demonstrate that special care should be taken for radiation shielding and protection of the key components located on the outboard midplane and on the inboard midplane. The effect of the tritium accumulation on neutronics analysis should be carefully considered for EAST tokamak D-D plasma operations.
The effect of density peaking (DP) on the neutronics analysis is also investigated. It is evident that the peak NWLs are all near the outboard midplane and that the poloidal distributions of the NWL are slightly different for these cases. With increasing DP, both the outboard and inboard peak NWLs decrease. However, the decrease in NWL is very small; NWL decreases only 11% when the neutron source peak increases about 1.5 times.