ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
S. Murakami, H. Yamada, M. Sasao, M. Isobe, T. Ozaki, T. Saida, P. Goncharov, J. F. Lyon, M. Osakabe, T. Seki, Y. Takeiri, Y. Oka, K. Tumori, K. Ikeda, T. Mutoh, R. Kumazawa, K. Saito, Y. Torii, T. Watari, A. Wakasa, K. Y. Watanabe, H. Funaba, M. Yokoyama, H. Maassberg, C. D. Beidler, A. Fukuyama, K. Itoh, K. Ohkubo, O. Kaneko, A. Komori, O. Motojima, LHD Experimental Group
Fusion Science and Technology | Volume 46 | Number 2 | September 2004 | Pages 241-247
Technical Papers | Stellarators | doi.org/10.13182/FST04-A561
Articles are hosted by Taylor and Francis Online.
Confinement of energetic ions from neutral beam injection heating is investigated by changing the magnetic field configuration of the Large Helical Device from a classical heliotron configuration to an optimized neoclassical transport configuration to a level typical of "advanced stellarators." The experimental results show the highest count rate of fast neutral particles not in the optimized configuration but in the inward-shifted one. The GNET simulation results show a relatively good agreement with the experimental results, and they also show a lower energy loss rate in the optimized configuration. This contradiction can be explained by the radial profile of the energetic ions. The relatively good agreement between experimental and simulation results suggest that ripple transport (neoclassical) dominates the energetic ion confinement and that the optimization process is effective in improving confinement in helical systems.