ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC posts hearing request notice for Belews Creek ESP application
An opportunity to request an adjudicatory hearing for Duke Energy Carolinas’ early site permit (ESP) application for the Belews Creek site in Stokes County, N.C., has been announced by the Nuclear Regulatory Commission. The notice of the opportunity was published February 9 in the Federal Register. The deadline to file a request for a hearing or petition for leave to intervene is April 10, 2026.
Huajiang Jin, Shuaishuai Zhang, Jianxiang Zheng, Jian Zhang, Huifang Miao, Liuxuan Cao
Fusion Science and Technology | Volume 80 | Number 5 | July 2024 | Pages 682-694
Research Article | doi.org/10.1080/15361055.2023.2232229
Articles are hosted by Taylor and Francis Online.
Understanding irradiation-induced degradation processes of nuclear structural materials is essential for creating methodologies and procedures for nuclear reactor safety. Due to the time- and resource-intensive property of both experiments and multiscale simulations of irradiation damage, the trial-and-error approach is completely inefficient. Recently, machine learning techniques have been employed to predict the properties of reduced activation ferritic martensitic (RAFM) steels, such as yield strength and elongation, as well as irradiation embrittlement in steel pressure vessels, with encouraging progress.
In this work, void swelling is predicted using a machine learning method for the first time, taking into account the synergistic effects of displacement damage, helium, and hydrogen. Assisted by the analysis of feature engineering, seven machine learning models are trained and compared by multicriteria evaluation methods. Finally, the parameter-optimized gradient-boosting model is selected as the mapping function with the highest accuracy and universality to predict void swelling. In particular, the dependence of the void swelling and the injection amount of helium and hydrogen in the continuous parameter variation range is predicted beyond the existing experimental data. This work demonstrates the feasibility of machine learning to predict material irradiation damage by synergistic effects and has practical significance in nuclear material optimization and reactor safety.