ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Congress passes new nuclear funding
On January 15, in an 82–14 vote, the U.S. Senate passed an Energy and Water Development appropriations bill to fund the U.S. Department of Energy for fiscal year 2026 as part of a broader package that also funded the U.S. Army Corps of Engineers and the U.S. Bureau of Reclamation.
Junjie Zhao, Zhaochun Zhang, Haibo Guo, Yang Wang
Fusion Science and Technology | Volume 80 | Number 5 | July 2024 | Pages 666-681
Research Article | doi.org/10.1080/15361055.2023.2228013
Articles are hosted by Taylor and Francis Online.
A computational study of the thermodynamic and elastic properties of the tungsten-berylliuminterface structure and the behavior of a helium-vacancy pair near the tungsten/beryllium interface is carried out by first-principles calculations. Briefly, the following properties were calculated: (1) electronic properties of the tungsten/beryllium interface structure and (2) thermodynamic functions, Gibbs free energy, entropy, and enthalpy and anisotropies and isotropic (poly-crystalline) elastic moduli (bulk, torsion, Young’s moduli) of the tungsten/beryllium interface structure containing helium interstitial atoms or helium-vacancy pairs. The computational study was to provide a critical appraisal of the effect of helium interstitial atoms on the properties of the tungsten/beryllium interface structure. Calculated interface properties could be incorporated in an antiradiation damaging feature evaluation system to develop and test tungsten-based composites as plasma-facing materials.