ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Donald A. Spong, Dennis J. Strickler, Steven P. Hirshman, James F. Lyon, Lee A. Berry, David R. Mikkelsen, Donald A. Monticello, Andrew S. Ware
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 215-223
Technical Paper | Stellarators | doi.org/10.13182/FST04-A558
Articles are hosted by Taylor and Francis Online.
An important goal for a stellarator design is to incorporate enough flexibility to experimentally test a range of physics issues. The proposed Quasi-Poloidal Stellarator device achieves this by allowing independently variable currents in the modular, vertical field, and toroidal coil sets. Numerical optimizations and modeling show that this can allow significant tests of neoclassical cross-field transport rates, reduced poloidal flow damping (relative to the tokamak), and magnetic island width control. This flexibility is achieved in a unique, very low aspect ratio (R0/<a> = 2.7) two-field period (racetrack-shaped) configuration that generates rotational transform from a combination of internal plasma currents and external shaping.