ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Johanna Wydra, Alexander Marsteller, Robin Größle, Florian Priester, Michael Sturm
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 616-622
Research Article | doi.org/10.1080/15361055.2023.2238170
Articles are hosted by Taylor and Francis Online.
Experimental values for the viscosity of the radioactive hydrogen isotope tritium (T2) are currently unavailable in literature. The value of this material property over a wide temperature range is of interest for applications in the fields of fusion and neutrino physics, as well as to test ab initio calculations. As a radioactive gas, tritium requires a careful experiment design to ensure safe and environmental contamination–free measurements. In this contribution, we present a spinning rotor gauge–based tritium-compatible design of a gas viscosity measurement apparatus, or ViMA, capable of covering the temperature range from 80 to 300 K.