ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Jae-Uk Lee, Dong-you Chung, Hyun-goo Kang, Min Ho Chang, Pil-Kap Jung
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 582-589
Research Article | doi.org/10.1080/15361055.2023.2202302
Articles are hosted by Taylor and Francis Online.
In this study, the amount of 3He release from a tritium-loaded depleted uranium bed considering long-term operation in the fusion fuel cycle is assessed using empirical models. Several works are surveyed to investigate the trend of 3He released from uranium tritide. The model for 3He release is developed consisting of two parts, i.e., the natural release model and the heating release model, based on experimental studies. The natural release model is validated by applying it to experimental data. The model is applied to cyclic and long-term operation scenarios to assess the amount of 3He in the headspace of the metal tritide bed. The results show that the 3He release after long-term maintenance can be significant and must be separated from tritium before supply to the fuel cycle. During plasma operation and short maintenance, it is shown that the 3He release is less significant, but further requirement consideration is needed for the 3He separation process.