ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Teuntje Tijssen, Barry Butler
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 563-570
Research Article | doi.org/10.1080/15361055.2023.2180243
Articles are hosted by Taylor and Francis Online.
The tritium inventory of future fusion power plants needs to be monitored in the fuel cycle for several reasons: to comply with limits imposed by environment and safety regulators, to adhere to practices required by nuclear regulators, and for process control purposes. Fulfilling all these requirements leads to a comprehensive list of locations in the fuel cycle where tritium monitoring needs to take place, each characterized by different measurement conditions and required accuracies. Meanwhile, existing tritium detection technologies all come with specific applicabilities such as accuracy, material phase, and ability to detect tritium in a continuous manner. These do not necessarily correspond to the required measurement conditions. As an example, one tritium detection technology will be matched up with the previously defined measurement conditions, which allows for the identification of gaps in the existing detection capabilities of this technology. This work leads to several recommendations, i.e., developments to expand the applicability of tritium detection technologies, experimental proposals to test detection techniques at more extreme conditions, and expansion of the regulatory framework regarding tritium handling and breeding. These developments are critical for a functioning tritium management and control system, and this paper outlines the first step in that process.