ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Simon Niemes, James Robert Braun
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 558-562
Research Article | doi.org/10.1080/15361055.2023.2209087
Articles are hosted by Taylor and Francis Online.
Accurate gas samples containing tritiated molecules are essential for the development of tritium monitoring tools and to study tritium-induced reaction dynamics. We prepared gas samples that may contain any of the six hydrogen isotopologues by manometrically mixing high-purity homonuclear isotopologues and forming the remaining isotopologues by chemical equilibration. In order to independently verify the relative isotopologue concentrations to the manometrically derived composition and thus validate the accuracy of the produced gas samples, we measured the effective speed of sound (SoS) in the gas mixtures, which are highly sensitive to small deviations in the relative molar fractions due to the large difference in the individual SoSs. We found that deviations between the manometrically derived and measured SoSs are on a 0.1% level, demonstrating the accuracy of the sample production procedure and the suitability of SoS measurements for inline composition monitoring in tritium applications.